태그검색
찾고 싶은 것이 있나요?
라벨링에 대한 2개의 태그 검색결과가 있습니다.
- 블로그 족집게 데이터가 ‘전교 1등’ AI 만든다! 딥러닝 기반 알고리즘들은 충분한 양의 데이터로 학습한다면 좋은 성능을 낸다고 알려져 있습니다. 딥러닝 알고리즘은 이미지 분류, 객체 탐지, 영상 분할 등 여러 가지 분야에서 이미 사람보다 더욱 정확하고 빠르게 동작하고 있습니다. 이러한 딥러닝 알고리즘을 연구하고 개발하는 과정에서 딥러닝 알고리즘을 효과적으로 학습시키는 방법론에 관해서 연구가 많이 진행되었습니다. 더 많은 데이터로 학습한 딥러닝 모델에서 전달받은 정보를 활용해 학습하는 기법인 지식 증류(Knowledge Distillation). 다른 데이터들로 공부한 것을 토대로 효과적으로 학습하는 전이 학습(Transfer Learning)....
- 블로그 AI는 ‘스스로 학습’할 수 있을까? 수많은 학습 데이터를 주기만 한다면, 딥러닝은 문제를 잘 풀 수 있다고 알려져 있습니다. 예를 들어 1,000개의 카테고리에 대해 130만 장의 분류된 이미지가 있는 ImageNet 태스크에 대해 딥러닝 알고리즘은 Top 5 기준 98% 이상의 정확도를 달성하며 사람의 판별 정확도를 뛰어넘었습니다. 하지만 태스크에 맞는 데이터를 수집하는 것은 비쌉니다. 세상에는 이미지가 넘쳐나지만, 각각의 이미지가 어떤 의미를 가지는지 사람이 일일이 분류해 라벨을 만드는 것은 오래 걸리고 힘이 듭니다. 지도 학습, 비지도 학습, 그리고 자기...